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CHAPTER

ONE

INSTALLATION

This page describes installation of pog and how you can integrate it into your own project.

1.1 Getting source code

At first, you’ll need to obtain source code. If you want the latest released version, which should always be stable, you
can download one from GitHub releases page. If you want to get the latest development version or you are intersted
in the development of the library, you can also get the source code using git. To clone the repository run:

git clone https://github.com/metthal/pog.git

1.2 Requirements

In order to use pog, you will need:

• C++ compiler with C++17 support

• CMake 3.8+

• re2

• fmt

You can install them from your distribution repositories. For Ubuntu based distributions use:

apt-get install libfmt-dev libre2-dev

For Red Hat based distributions use:

dnf install fmt-devel re2-devel

For macOS use:

brew install fmt re2

There is also an option to download re2 or fmt while building the project. See Compilation for more information
regarding this.
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1.3 Compilation

pog itself is header-only library but it has dependencies which are not header-only. To compile it run:

cmake -DCMAKE_BUILD_TYPE=Release [OPTIONS] ..
cmake --build . --target install

Other options you can use:

• POG_DOWNLOAD_RE2 - re2 will be downloaded during build-time. It will be compiled and installed as
libpog_re2.a (or pog_re2.lib on Windows) together with the library. (Default: OFF)

• POG_DOWNLOAD_FMT - fmt will be downloaded during build-time. It will be compiled and installed as
libpog_fmt.a (or pog_fmt.lib on Windows) together with the library. (Default: OFF)

• POG_TESTS - Build tests located in tests/ folder. (Default: OFF)

• POG_EXAMPLES - Build examples located in examples/ folder. (Default: OFF)

• POG_PIC - Build position independent code. (Default: OFF)

Attention: Option POG_PIC does not have any effect if you do not neither of POG_DOWNLOAD_RE2 or
POG_DOWNLOAD_FMT. Libraries installed in your system are not guaranteed to be position independent.

1.4 Usage

pog will be installed together with CMake configuration files which make integration into other CMake projects much
more easier. If you use CMake in your project put following lines in your CMakeLists.txt file and that should be
it.

find_package(pog REQUIRED)
target_link_libraries(<YOUR_TARGET> pog::pog)

For projects which use other build systems, you can use pkgconfig files which are installed too. To obtain which
compilation flags are needed run following commands in your shell or integrate it directly into your build system.

pkg-config --cflags pog
pkg-config --libs pog

To use pog from your source code, include file <pog/pog.h>. Everything in pog is located inside pog namespace.
Example:

#include <pog/pog.h>

int main()
{

pog::Parser<Value> parser;

// your parser definition
}

2 Chapter 1. Installation
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CHAPTER

TWO

WRITING PARSER

In this section, we will describe basics on how to write your own parser using pog. It is assumed that you have already
integrated pog into your project. If not, see Installation. If you already know how to write parser in pog and want to
know about more advanced features, see Advanced features.

2.1 Principles

Before you start reading this section, make sure that you are familiar with grammars in a sense of formal languages.
Even though we have tried to write this documentation in a way so that even person without extensive knowledge of
formal languages will understand it, it is still expected that reader is somehow familiar with the concepts and at least
is aware of them and know what they represent.

When you want to parse something, you need to know the grammar of the language you are trying to parse out and that
is also what pog expects from you. You need to give it a grammar so it knows the syntax of what it is parsing. Every
grammar is made out of rules. While parsing, these rules will be applied to the parts of the input you are parsing. In
pog, you will be able to specify so called semantic actions which are tied to the rules of your grammar. Each time
some rule of your grammar will be applied, its semantic action will be performed. That is where your code will come
and it will give a meaning to the rules of your grammar. Your actions will however need some data to operate on.
Since rules are made out of symbols, there will be data tied the symbols of the right-hand side of the rule and you will
be able to tie the result to the symbol on the left-hand side of the rule.

pog splits the process of parsing into two separate procedures in a similar way like flex and bison. So at first, the input
is tokenized into tokens using set of regular expressions. Some of the tokens can be simply skipped and never reach the
parser at all (like whitespaces or comments) but some may be turned into symbols of your grammar and represented
in your grammar rules. This makes the grammar less cluttered. Since it is expected that you might want to perform
actions even when a token is found, you will be able to specify actions for tokens and tie some data to the symbol they
represent.

The base class on which the whole pog stands is Parser<ValueT>. ValueT here is data type that can be tied to
all symbols of your grammar and when we say all we really mean it. This data type will be tied to each symbol you
have in your grammar and you will operate on it in your semantic actions. It will be also expected that each semantic
actions will return value of ValueT data type. The only constraints are that ValueT needs to be default constructible
and copyable or movable (move is preferred if it is possible, if not then copy is performed). We do now want to force
you to use any specific data type but we recommend using std::variant.

2.2 Tokenization

You start defining your parser with tokens. You need to provide regular expression that describes how to recognize
the token on the input. The syntax for regular expression is Perl-like. Here is an example on how to define tokens for
recognizing boolean, integer literals and string literals (without escape sequences).
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using Value = std::variant<int, bool, std::string>;
pog::Parser<Value> parser;

parser.token("\\s+"); // Token for skipping whitespaces
parser.token("="); // Token for single '='
parser.token("(true|false)"); // Token for boolean value
parser.token("[0-9]+"); // Token for integer value
parser.token(R"("[^"]*")"); // Token for string value (you might find raw
→˓string literals useful)
parser.token("[a-zA-Z_][a-zA-Z0-9_]*"); // Token for identifiers

This will allow the parser to recognize what is on the input. If there is anything that it is not able to tokenize it is
reported as syntax error. Tokenization also takes place only at the very start of the input so there is no automatic
skipping of unknown characters. Once the token is read, the characters that were matched with the regular expression
are consumed and the new start of the input starts at the end of the matched token.

There might be a situation when multiple regular expression match the same input. For example, consider regular
expressions (true|false) and [a-zA-Z_][a-zA-Z0-9_]*. They both would match on true or false but
they would also match on trueaaa. We certainly know that true and false should be tied to the first regular
expression while trueaaa the second one but tokenizer does not know that. To resolve these issues, tokenizer
always prefers the longest possible match. If there are multiple matches of the same length then the token which
is specified earlier in the source code is chosen. There is also an another option to resolve this issue but it requires
your interaction. If you specify token as fullword then the regular expression you provide will be replaced by
<YOUR_REGEXP>(\b|$). In our example, (true|false) would not match on trueaaa in that case.

parser.token("(true|false)").fullword();

By specifying these regular expressions, our input is now recognized but we should be able to specify what symbol in
our grammar will these tokens represent. We do that with symbol method.

using Value = std::variant<int, bool, std::string>;
pog::Parser<Value> parser;

parser.token("\\s+");
parser.token("=").symbol("=");
parser.token("(true|false)").symbol("bool");
parser.token("[0-9]+").symbol("int");
parser.token(R"("[^"]*")").symbol("string");
parser.token("[a-zA-Z_][a-zA-Z0-9_]*").symbol("id");

Attention: Do not use symbol names prefix with either @ or _. Those are reseved for internal purposes of the
parser. Proper working of the parser is not guaranteed in such case.

As you can see, we haven’t specified any symbol for the first token since we are not interested in whitespaces in our
grammar. This way, all whitespaces will be automatically skipped and we can only focus on our 3 symbols which
we have specified - bool, int and string. Once we have symbols, we would also like to take the actual boolean
value, digits of a number or characters of a string and tie it to our symbol. You specify the action with actionmethod
which expects callable object that accepts std::string_view containing the part of the input that was matched
with that specific regular expression and returns value of Value type.

using Value = std::variant<int, bool, std::string>;
pog::Parser<Value> parser;

parser.token("\\s+");
(continues on next page)

4 Chapter 2. Writing parser



pog, Release 0.2.0

(continued from previous page)

parser.token("=").symbol("=");
parser.token("(true|false)")

.symbol("bool")

.action([](std::string_view str) -> Value {
return str == "true";

});
parser.token("[0-9]+")

.symbol("int")

.action([](std::string_view str) -> Value {
return std::stoi(std::string{str});

});
parser.token(R"("[^"]*")")

.symbol("string")

.action([](std::string_view str) -> Value {
return std::string{str.begin() + 1, str.end() - 1};

});
parser.token("[a-zA-Z_][a-zA-Z0-9_]*")

.symbol("id")

.action([](std::string_view str) -> Value {
return std::string{str};

});

Token for = does not need any action because it itself doesn’t bear any value. We only need an information that it is
located on the input. You might also need to perform some action whenever end of an input is reached. In that case
you can use end_token method.

parser.end_token().action([](std::string_view str) -> Value {
// some action
return {};

});

2.3 Grammar rules

Once your input is tokenized, you may start with specfying grammar rules. Let’s define grammar rule for assignment
of boolean, integer or string literal value to an variable.

// var_init -> id = literal
parser.rule("var_init")

.production("id", "=", "literal");
// literal -> bool | int | string
parser.rule("literal")

.production("bool")

.production("int")

.production("string");

The rule() method expects symbol on the left-hand side of the rule and can have multiple productions with multiple
symbols on the right-hand side (even none). If we wanted to write rules for languages which would represents 0 or
more variable initializations, we could write that as ( is usual way to denote empty string in formal languages):

// var_init_list -> var_init_list var_init |
parser.rule("var_init_list")

.production("var_init_list", "var_init")

.production();

2.3. Grammar rules 5
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To specify action that should be performed when the rule is applied, you put it directly into the production at the very
end.

// var_init -> id = literal
parser.rule("var_init")

.production("id", "=", "literal", (auto&& args) -> Value {
// args[0] == value tied to 'id'
// args[1] == value tied to '='
// args[2] == value tied to 'literal'

// Make sure that 'id' is declared
// Assign args[2] to variable specified by args[0]
return {};

});
// literal -> bool | int | string
parser.rule("literal")

.production("bool", [](auto&& args) -> Value { return std::move(args[0]); })

.production("int", [](auto&& args) -> Value { return std::move(args[0]); })

.production("string", [](auto&& args) -> Value { return std::move(args[0]); });

Action accepts std::vector<Value> as its parameters that contains values tied to the symbols of right-hand side
of the rule. Returned value from the action is tied to the symbol on the left-hand side of the rule.

Every grammar also needs to have some symbol which is used as a starting point for the whole parsing. That would
be the symbol from which you are able to generate the whole language you are able to parse. You need to specify this
symbol explicitly using set_start_symbol() method.

parser.set_start_symbol("var_init");

2.4 Parsing

Once you’ve specified all tokens and grammar rules, you are almost ready to start parsing. But before, you need to
prepare your parser. This action will take your tokens and grammar rules and will build parsing table. It will return
report that will either mean success or some kind of problem with the grammar. To check the result, simply treat is as
boolean value. You may also iterate over it with range-based for loop to obtain issues found in the grammar. These
issues can be:

• Shift-reduce conflict

• Reduce-reduce conflict

These conflicts are specific to shift-reduce parser which pog also generates. Those are types of parser which use stack
to which they either shift values they see on the input or they reduce the stack by popping out multiple values out of
stack and shift another value (this represents application of a grammar rule). Whenever parser is not able to decide
whether to shift some value to the stack or to reduce using certain rule, it means shift-reduce conflict. If the parser is
not able to decide whether to reduce by rule A or rule B, it is reduce-reduce conflict. There isn’t a simple cookbook on
how to fix these conflicts in your grammar (and sometimes it is not even possible) so if you run into one, you might
want to learn more about parsers and how these conflicts occur to resolve them. The fact that these issues are in your
grammar does not mean that you cannot use your parser. You may still be able to parse out your language but you
might not be able to parse certain constructs of your language and will receive syntax errors. There are however cases
in which these conflicts can be completely ignored.

After preparing your parser, you are ready to parse the input using method parse(). It accepts input stream (such
as std::istream) and returns std::optional<ValueT>. In case of a successful parsing, the returned value
will contain what was tied to the starting symbol of the grammar. When syntax error occurrs, parse() raises an
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exception of type SyntaxError. In some corner cases which are not covered by syntax errors but might represent
internal failure of the parser, the returned optional value will be empty.

auto report = parser.prepare();
if (!report)

fmt::print("{}\n", report.to_string());

std::stringstream input(/* your input */);
try
{

auto result = parser.parse(input);
if (!result)
{
std::cerr << "Error" << std::endl;
return;

}

std::cout << "Parsed value " << result.value() << std::endl;
}
catch (const SyntaxError& err)
{

std::cerr << err.what() << std::endl;
}

2.5 Examples

Check examples folder to see some simple examples of existing parsers.

2.5. Examples 7
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CHAPTER

THREE

ADVANCED FEATURES

3.1 Operator & rule precedence

Typical features of many languages are operators such as arithmetic operators, bitwise operators, relational operators
and many others. These operators have certain precedence and associativity. That also complicates parsing process
because if we for example take 2 + 3 * 4 - 5, the order of evaluation is important here. The usual way to model
this in grammars is to specify all of this directly in grammar rules but this might seriously complicate the whole
grammar. This is a grammar you would usually write for addition and multiplication expressions with support for
parentheses.

𝐸ß𝐸 + 𝐸

𝐸ß𝐸 * 𝐸
𝐸ß(𝐸)

𝐸ß𝑛𝑢𝑚𝑏𝑒𝑟

This doesn’t however incorporate any precedence whatsoever. Here is a grammar with resolved precedences.

𝐸ß𝐸 + 𝑇

𝐸ß𝑇

𝑇ß𝑇 * 𝐹
𝑇ß𝐹

𝐹ß(𝐸)

𝐹ß𝑛𝑢𝑚𝑏𝑒𝑟

Now imagine this situation with much more operators and much more precedence levels. pog shifts the responsibility
of handling precedences from the user to itself. At first, you need to define precedence level and associativity of the
token you consider as operators.

parser.token("\\+").symbol("+").precedence(1, Associativity::Left);
parser.token("-").symbol("-").precedence(1, Associativity::Left);
parser.token("\\*").symbol("*").precedence(2, Associativity::Left);
parser.token("/").symbol("/").precedence(2, Associativity::Left);

Level of the precedence is just an unsigned integer. The higher the number, the greater the precedence. If two operators
have the same precedence then associativity comes in to resolve this situation. During parsing, precedence is resolved
at the moment of operator symbol being the next token on the input. To resolve which symbol to compare against, the
right-most terminal symbol of the rule which would be currently reduced is considered as operator.

Let’s imagine it on an example. You are currently in the state of the parser where you are deciding whether to reduce
by rule 𝐸ß𝐸 + 𝐸 or shift the following symbol. The next symbol on the input is *. Right-most terminal in 𝐸 + 𝐸 is
+ so we should rather shift than reduce because multiplication needs to be evaluated before addition.

9
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Precedence cannot only be assigned to tokens (or more presicely symbols tied to tokens) but also rules. If the rule has
priority assigned then this priority is considered rather than priority of the right-most terminal. The case when this
can be useful is for example for unary minus. Unary minus uses the same symbol as subtraction but unary minus has
greater precedence than for example multiplication or division.

parser.token("\\+").symbol("+").precedence(1, Associativity::Left);
parser.token("-").symbol("-").precedence(1, Associativity::Left);
parser.token("\\*").symbol("*").precedence(2, Associativity::Left);
parser.token("/").symbol("/").precedence(2, Associativity::Left);
parser.token("[0-9]+").symbol("number").action(/* action */);

parser.rule("E")
.production("E", "+", "E")
.production("E", "-", "E")
.production("E", "*", "E")
.production("E", "/", "E")
.production("-", "E")
.precedence(3, Associativity::Right)

.production("number");

Whenever you specify precedence like this, it is always tied to the last production you have specified.

3.2 Mid-rule actions

Most of the times, it is enough to have a rule action being preformed after the whole rule is applied (or rather reduced
since we are in advanced section). There might be some cases when there is a need for so called mid-rule action. That
is action performed after only certain part of the rule has been parsed out. This comes as a problematic since the parser
cannot know whether it is in the middle of parsing certain rule. It will know which rule to reduce after it has parsed its
whole right-hand side (and also depending on the next input symbol).

pog tries to solve this by internally transforming your rules such that this is possible. Let’s take for example rule func
-> function id ( args ) { body }. Usually you would write it as:

parser.rule("func")
.production("function", "id", "(", "args", ")", "{", "body", "}",

[](auto&& args) { /* action */ }
);

But you might want to check whether name of the function does not collide with some other already defined function
before you start parsing the function body to exit early. You can write it as following:

parser.rule("func")
.production(

"function", "id",
[](auto&& args) { /* action 1 */ },

"(", "args", ")", "{", "body", "}",
[](auto&& args) { /* action 2 */ }

);

Internally it would look like this:

parser.rule("func")
.production("function", "id", "_func#0.0", "(", "args", ")", "{", "body", "}",

[](auto&& args) { /* action 2 */ }
);

(continues on next page)
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(continued from previous page)

parser.rule("_func#0.0")
.production([](auto&& args) { /* action 1 */ });

As you can see, epsilon rule has been inserted where mid-rule action is supposed to be. This comes with some
disadvantages. Since internally, rule is being modified, it can introduce shift-reduce conflicts which weren’t there
before. Values returned from mid-rule actions are stored together with all values associated to left-hand side symbols.
That means you need to take into account also mid-rule actions when counting indices in args array. For example in
order to access arguments (symbol args) from action 2 you need to access index 4 instead of 3. The left-hand side
symbol will always be assigned value from the end-rule action.

Attention: You should not move values out of arguments array in mid-rule actions if you want to rely on them
in later actions. The values for mid-rule actions are only borrowed and returned back to the stack when mid-rule
action is finished. By moving them, you essentially get them to unspecified state (based on the implementation of
your type).

3.3 Tokenizer states

Tokenizer has set of regular expressions and matches them all against the start of the input. However, it might be
sometimes unnecessary to match every single regular expression or even impossible to design such that it doesn’t
collide with other regular expressions and always returns you the right token you want. For this purpose, you can
define tokenizer states and transition between those states as you want. Tokenizer can be in a single state at the time
and can transition to any other state. Regular expression of token can be active in multiple states at once. States are
represented using string literals. Default state is called @default. This is for example useful for tokenizing string
literals with escape sequences. Upon reading " from input, you can enter special state which reads characters one by
one and whenever runs into escape sequences like \n, \t or any other, then it appends correct escaped character to the
string. Upon reaching ending ", we enter default state. While we are tokenizing this string literal, there is no reason to
match all other regular expressions for other tokens because we know we are in a specific context in which characters
have other special meaning.

p.token("a"); // only active in default state
p.token("b")

.states("state1", "state2"); // only active in states state1 and state2
p.token("c") // only active in default state

.enter_state("state1"); // causes transition to state1
p.token("d")

.states("state1") // only active in state1

.enter_state("@default"); // causes transition to default state

You can also explicitly call parser method enter_tokenizer_state to trigger state transition anywhere you
want.

Attention: Be aware that changing tokenizer state in midrule actions may not always work like you want. In
order for midrule action to performed, parser needs to read the following token from the input. If you therefore
perform state transition in the midrule action, the next token is already tokenized from your current state, not from
the state you are transitioning into.

3.3. Tokenizer states 11
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3.4 Input stream stack

Parser in pog is capable of working with multiple inputs. When you call parse() method with some input stream,
what actually happens is that this stream is pushed onto input stream stack. You are able to control this input stream
stack with methods push_input_stream() and pop_input_stream(). Whenever parser asks tokenizer for
the next token, it will be always returned from the top-most input stream on the stack. End token actions are still
performed when we reach the end of the top-most input stream but end symbol is not passed to the parser until we
reach the very last input stream on the stack. So end symbol is passed down to parser only if the input stream stack is
empty or we reach the end of the top-most input stream without anyone popping it. This can be useful for implementing
things like include of another file.

static std::vector<std::string> input_streams = {
"<stream 1>",
"<stream 2>",
"<stream 3>",
"<stream 4>"

};

// You need to ensure that lifetime of stream is longer than its use in parser
std::vector<std::unique_ptr<std::stringstream>> inputs;

p.token("include [0-9]+").action([&](std::string_view str) {
auto stream_idx = std::stoi(std::string{str.data() + 8, str.end()}); // skip

→˓'include '
inputs.emplace_back(std::make_unique<std::stringstream>(input_streams[stream_idx]));

→˓ // create stream
p.push_input_stream(*inputs.back().get()); // push it onto input stack
return 0;

});
p.end_token().action([&](std::string_view) {

p.pop_input_stream();
return 0;

});

In the example above you can see how to implement basic include-like functionality that allows you to include one
of input_streams by their index. It also works recursively out of the box. Be aware that you need to ensure the
lifetime of your input stream is longer than its use in parser because parser does not take ownership of your streams.

12 Chapter 3. Advanced features
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FOUR

DEBUGGING

Debugging errors in parser can be a hard process since its whole complexity and the amount of data and code you need
to go through to even reach the source of your problems. This sections describes some options you have to debug the
problems in your parser.

4.1 HTML report

You are able to generate HTML report out of your parser. The output is HTML file which contains full parsing table,
contains information about LR automaton and it even includes Graphviz representation of LR automaton. In order to
generate HTML report, initialize it with your Parser after you’ve prepared it.

Parser<Value> parser;

// tokens & rules

// Don't forget to first call prepare()
parser.prepare();

HtmlReport html(parser);
html.save("parser.html");

You can now open parser.html in your current working directory and inspect the inner structure of your parser.

4.2 LR automaton

Generated HTML report will contain Graphviz representation of LR automaton at the very bottom. Copy it over to
some other file and run following command to turn it into PNG image.

dot -Tpng -o automaton.png <INPUT_FILE>

13
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